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Abstract  

An essential indicator for Li-ion batteries is their state of charge (SOC). The safe operation of a Li-ion 

battery can be ensured by an accurate SOC estimation. A precise estimation of the remaining energy level 

or SOC of the cell or battery pack is necessary for battery management systems (BMS). However, in an 

operational environment with Gaussian noise, the conventional estimation approach, has a cumulative 

inaccuracy and is unable to sustain satisfactory results for an extended period of time. The estimation error 

brought on by Gaussian noise can be eliminated using the Kalman filtering process.For the purpose of 

estimating the state of charge, three Kalman filters, Extended Kalman Kalman filters (EKF), Adaptive 

Extended Kalman filters (AEKF) andUnscented Kalman filters (UKF) were created and studied. The test 

system is created in MATALAB/Simulink to examine the effectiveness of the various approaches. 

Different models are developed and tested.Simulation findings demonstrate that the suggested UKF based 

method outperforms conventional methods and has a higher estimation accuracy under various operating 

conditions.A comparison between EKF, AEKF and UKF shows UKF gives minimum SOC estimation error 

within the range of 0.10%.  

  

Keywords: Battery; SOC Estimation; Kalman filters; UKF; Dynamic modelling; battery management 

system  

  

1. Introduction  

Two major issues facing the world in recent years are environmental pollution and the energy crisis [1]. 

The sharp rise in the number of fossil fuel vehicles makes these issues worse. Sustainable development 

places a strong emphasis on the replacement of fossil fuels with low-carbon and effective energy sources. 

Energy Storage is a crucial component in producing renewable energy, and Li-ion batteries are the most 

popular option due to a number of benefits, including comparably better charge and discharge performance, 

high energy and charge densities.Due to its high energy density, extended cycle life, and rapid charging 

time, lithium-ion batteries are frequently used in smart home applications [2]. Li-ion batteries play a vital 

role in the advancement of modern technology, such as electric vehicles (EVs), because to their attributes 

of long cycle life, high power endurance and high power density [3-5]. The battery's capacity is reflected 

by the state of charge (SOC), which is a crucial indicator. The battery management system's ability to 

accurately estimate SOC during the charge and discharge is crucial.  

Precise SOC calculation takes into account important data including battery performance and remaining 

life [6], which in turn helps to manage and use battery power and energy [7] more effectively. Additionally, 

over-discharging and over-charging of the battery, which shorten battery life, cause explosions or flames, 

accelerate ageing and permanently harm the cell structure of batteries, which can be controlled using proper 

SOC estimation [8].The Battery Management System (BMS), which controls the energy flow in a battery 

pack with respect to individual cell voltages, temperature, state of charge, and condition of health, is 

typically programmed with the SOC estimation algorithm. The primary purpose of BMS is to keep the 

battery system's operating environment secure and to guard against damage [9]. Although the calculation 
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of battery SOC is a crucial BMS function, the non-linear, intricate electrochemical process in the battery 

makes it difficult to estimate accurately online [10].  

Many studies have used different techniques to estimate SOC in recent years, including the amperehour 

integration approach (Ah) [11], the Kalman filter method (KF) [12–14], and deep reinforcement learning 

(DRL) [15–18]. The Ah is used the most frequently among them. The outdated techniques for determining 

the SOC include counting Ah and measuring impedance. The SoC can be determined via Ah counting as 

given below [19]:  

𝑆𝑜𝐶(𝑡) =  𝑆𝑜𝐶(𝑡0) + ∫
𝜂𝐼𝑡

3600𝐶0

𝑡

𝑡0
𝑑𝜏                                                        (1)                                              

where SoC(t0), C0, h, and It indicate the battery's starting SOC, maximum capacity, coulomb factor, and 

terminal current.  

Ah approach, however, has a cumulative inaccuracy and is unable to fix the divergence of the starting value 

of SOC [20]. The accuracy decreases over time. The Ah counting method is regarded as imprecise since 

the current measurement inaccuracy accumulates. Moreover, it is unable to determine the SoC's starting 

value. The second method [21–22] uses the open-circuit voltage (OCV) to calculate SoC in accordance 

with the battery's OCV–SoC curve.  

The most frequent methods for SOC estimation utilized include: coulomb counting, open circuit voltage 

(OCV) estimation, electrochemical impedance spectroscopy (EIS), and filtering. Some of the most 

commonly used SOC estimation methods are listed in Table 1. However, the OCV is measured after the 

battery has been removed from the circuit, hence this method is unable to identify the SoC when it is 

operating continuously. Due to the fact that battery impedance varies with SoC, the SoC can also be inferred 

from battery impedance. However, because battery impedance is temperature dependent, additional tools 

are required to measure it.  

Table 1: Different SOC Estimation Methods  

Category  Methods  

Direct Measurement  Open  circuit  voltage, Terminal voltage, 

Impedance method  

Book keeping method  Coulomb  counting, Modified coulomb 

counting  

Indirect measurement  Neural network, support vector, fuzzy logic, 
Kalman filter, Extended Kalman filter, 
Unscented Kalman filter, Cubature Kalman 
filter, Particle filter, H infinity filter, 

Nonlinear observer, Sliding mode observer,  

Proportional integralobserver  

Hybrid methods  Coulomb counting and Kalman filter,  

Kalman filter and Long short-termmemory  

  

Recently, SOC has been estimated using a variety of adaptive techniques, such as fuzzy logic, neural 

networks, adaptive observers, and Kalman filters [23]. Other techniques for SoC estimation include robust 

and adaptive observers [24,25]. For a linear or piecewise linear battery model, robust H∞ observers can be 

created to estimate the SoC [26]. An H∞ observer taking into account an electrochemical impedance model 

for SoC estimate is introduced by Chen et al. [27]. However, the robust-observer approach cannot be used 

in low-cost microelectromechanical (MEMS) devices because the H∞ algorithm requires extensive matrix 

operations.  

For SoC estimation, adaptive model reference observer [28], particle filter [29] and nonlinear approaches 

[30] are also used. Hu et al. [31] provided a technique for estimating SoC taking into account the time-
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varying model parameters taking into account temperature variations during the tests. Nevertheless, 

determining model parameters for various temperature ranges takes time and is expensive.  

Another nonlinear technique for SoC estimation is sliding-mode observer (SMO). This observer takes the 

battery's nonlinear model with uncertainties into account [32, 33]. The chattering phenomenon is the SMO-

based approaches' fundamental flaw. These observers have strong robustness because they can deal with 

the ambiguity in the model parameters. In order to minimize chattering, Chen et al. [34] introduce an 

adaptive switching-gain SMO for SoC estimation. The strategy is challenging to put into practise, though.  

Another group of SoC estimate techniques is intelligence-based techniques, which includes neural 

networks, fuzzy neural networks, and fuzzy adaptive neural networks [35–39]. These techniques have 

various drawbacks. Although the neural network-based approaches do not require a mathematical model 

of the batteries, complete and trustworthy datasets are required for training, testing and validation. 

Inaccurate SoC estimation can also result from using the same training dataset for batteries of varied ages 

[40]. Additionally, this method's implementation on the CPU presents its own challenges. The fuzzy 

inference systems also rely on the expertise of experts [41]. Problems arise while choosing the membership 

functions for the fuzzy system design due to expert disagreements. There are also learning-based options 

for the SoC estimation, including deep learning [42] and machine learning [43]. The distribution of the 

training data and test data is assumed to be the same by the deep-learning algorithms for the SoC estimate. 

But in reality, this presumption is incorrect. A deep-transfer neural network with multiscale distribution 

adaptation was given in [44] for the SoC estimate as a solution to this issue, but the main disadvantage of 

this approach was its difficult implementation. Since they do not require the dynamic model of the battery, 

learning-based approaches are often good for SoC estimate. However, a sizable, trustworthy training 

dataset is needed for these techniques. Additionally, they need the distribution of the training and test data 

as well as pricey graphics processing units (GPU).  

Rudolph Kalman [45] created one of the most used algorithms, the KF, in 1960. It was initially used to 

predict the trajectories of both manned and unmanned spacecraft. The Kalman filter, a recursive algorithm 

for estimating state variables of a dynamic system, has been used to predict battery SoC. Despite the 

measurement noise, this optimal observer can offer a precise evaluation of the states. Among these 

techniques, the Kalman filtering seems to be very promising [46]. Plett [47–49] presented a technique in 

2004 for using the KF to estimate the SOC of LICs, which is not observable directly. This approach was 

frequently modified in later works, leading to a variety of KF-based state estimation implementations. In 

real-world applications, it filters the system's input and output signals to precisely forecast the dynamic 

state of the system. The interference brought on by white noise in the system can be eliminated by the 

extended Kalman filter (EKF) approach, and the cumulative error brought on by the ampere-time 

integration method can be reduced.  

As the battery model is nonlinear, the SoC is commonly estimated using the extended Kalman filter (EKF) 

[50–53]. Additionally, the lifetime of lithium-ion batteries has changed their electrochemical 

characteristics, which can cause the EKF method to estimate SoC and SoH incorrectly. KFs have the 

advantage of taking model and measurement errors into account, which produces a robust estimating 

behaviour. A cell depends on SOC, temperature, current and age [54], and because a model cannot account 

for every scenario, its uncertainties change as it operates.  

In [55], an adaptive extended Kalman filter (AEKF), which employs a covariance adaptation technique, is 

presented to enhance the performance of the Kalman filter in SoC estimation. The estimation algorithm's 

linearization inaccuracy is this filter's fundamental flaw. In [56,57], the unscented Kalman filter (UKF) and 

adaptive UKF are used to address this issue. Additionally [41], implements a sigma-point EKF on the 

battery model. Recently, an interactive multi-model UKF [59] and a central-difference Kalman filter 

(CDKF) were also constructed for SoC estimation. These solutions, however do not account for model 

uncertainties and rely heavily on precise battery models.  

However, the main drawbacks of the existing approaches can be summed up as (a) the traditional observers, 

like SMO and H∞, have chattering in their response or require complicated mathematical calculation and 
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not able to estimate SOC when measurements noise are present, (b) the artificial intelligence-based 

approaches require a trustworthy training dataset or specialists' knowledge of the battery; (c) KF based 

approaches depends on precise battery models and not able to estimate SOC properly when model 

uncertainties are present. A detailed description about the advantages and disadvantages different SOC 

estimation methods are listed in Table 2.  

Table 2. Merits and demerits of various SoC estimation techniques  

Technique  Advantages  Disadvantages  

Ampere-hour (Ah) counting 

approach  

Less calculation, low cost, and 

easy implementation  

Error accumulates  

Impedance  measurement  

approach  

Low calculation, low cost, and 

easy implementation  

Sensitive to temperature change 

and time-taking process  

AI  

(Deep learning and  

Machine learning) algorithm  

Battery model not required  Large and accurate training data 

is necessary, and both training 

and test data must be 

distributed, costly GPU  

Kalman filters-based approach  Can estimate while 
measurement and process  

noises are present  

Battery model accuracy is 

required, as well as knowledge 

of measurement and process 

noises.  

H∞ observer  SoC estimation without 
knowledge of the statistical  

properties of the battery  

Heavy processors are required 

for calculation.  

Sliding mode-based observers  Tolerance to uncertainties in the 

model  

Chattering occurrences and slow 

convergence  

  

This study offers an UKF based SOC estimation utilising an equivalent battery circuit model. The 

equivalent circuit model demonstrates the nonlinear relationship between the OCV and SOC by including 

capacitors, resistors and a nonlinear voltage source.  The battery models are described in the below section.  

2. Battery SOC Estimation Model  

For use in several applications, electrochemical batteries come in a variety of models. The electro-circuit 

model is suitable for the implementation of estimate algorithms like SoC or SoH estimation. These models 

can be categorised into electrochemical, electro-circuit and intelligent models. The Rint model [60], 

Thevenin model [61], and Rngv model [62] are three common Li-ion battery related models. Among these, 

the Thevenin model can instantly represent the Li-ion battery's operational condition without adding too 

much delay to track the actual voltage, ensuring the model's correctness over the course of a lengthy 

simulation. Fig. 1 depicts the Thevenin model's structural layout.  

  
Fig. 1. Thevenin equivalent circuit model  

The circuit equations for Thevenin's model are given below using Kirchhoff's Voltage Law and Kirchhoff's 

Current Law as reference.  
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𝑈̇𝑃 = −
𝑈𝑃

𝑅𝑃𝐶𝑃
+ 

𝐼𝐿

𝐶𝑃
 

                                                                     𝑈𝐿 = 𝑈𝑃 + 𝑈𝑂𝐶 + 𝐼𝐿𝑅0                                                              (2) 

where IL is the current through the resistance R0, UL is terminal voltage for analogous circuit, UP is the 

terminal voltage for the polarization capacitor CP, UOC is open circuit voltage of equivalent circuit.  

The concept of Ah is used to describe the value of SOC, and the resulting equation is illustrated below.  

𝑆𝑂𝐶(𝑡) =  𝑆𝑂𝐶(𝑡0) +
∫ 𝑘𝑇𝑖(𝜏)𝑑𝜏

𝑡

𝑡0

𝑄𝑁
                                       (3) 

where SOC (t0) is the SOC of Li-ion battery at moment t0, kT  is Li-ion battery's temperature correction 

factor at temperature T,i (τ) is battery's current at instant τ, and QN is its rated capacity.  

Calculating the battery's open circuit voltage will yield the SOC. This method's SOC estimate equation is 

provided below.  

𝑆𝑂𝐶(𝑡) =  𝑆𝑂𝐶(𝑂𝐶𝑉) +
∫ 𝑘𝑇𝑖(𝜏)𝑑𝜏

𝑡

𝑡0

𝑄𝑁
                                       (4) 

where OCV is the open circuit voltage value, SOC (OCV) is the matching SOC's starting value. The discrete 

state space model of this estimating method is depicted below when combined (3) with the Thevenin model.  
 

[
𝑆𝑂𝐶𝑘

𝑈𝑃,𝑘
] = [

1 0

0 𝑒
−

∆𝑇

𝑅𝑃𝐶𝑃

] [
𝑆𝑂𝐶𝑘−1

𝑈𝑃,𝑘−1
] + [

∆𝑇

𝑄𝑁

(1 − 𝑒
−

∆𝑇

𝑅𝑃𝐶𝑃) 𝑅𝑃

] 𝐼𝑘−1 + 𝑤𝑘−1                          (5) 

𝑈𝐿,𝑘 = 𝑂𝐶𝑉 (𝑆𝑂𝐶𝑘) + 𝑈𝑃,𝑘 + 𝑅0𝐼𝑘 + 𝑣𝑘                                       (6) 

 

where ∆T is the discrete step size, wk-1denotes process noise at instant k -1, vk denotes observed noise at 

instant k.  

This nonlinear estimating issue can be resolved using the EKF technique. It uses a recursive technique to 

accomplish minimum variance estimation and can provide the estimate's error. This algorithm is an optimal 

autoregressive data processing algorithm. The discrete nonlinear state space model is given below.  

{
𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1)

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘, 𝑣𝑘)
 

𝑤𝑘 ~ (0, 𝑄) 

𝑣𝑘  ~ (0, 𝑅)                                                                    (7) 

Process noise at instant k-1 is denoted by wk-1, measurement noise at instant k is denoted by vk, covariance 

of wk and vk are denoted by Q and R, respectively.  

The system is linearized at an operating point to convert a nonlinear problem into a linear one. At this 

moment, the state equation is converted into the Taylor expansion at xk-1 = xk-1|k-1, wk-1 = 0.  

𝑤̃𝑘~ (0, 𝐿𝑘𝑄𝐿𝑘
𝑇 )                                                               (8) 

𝑣̃𝑘~ (0, 𝑀𝑘𝑅𝑀𝑘
𝑇)                                                              (9) 

 

The EKF method must estimate the Pk and xk in two separate ways during each sample cycle, including 

priori estimation and posteriori estimation. The priori estimate is used to determine the Kalman gain 

coefficient Kk between the two phases.  

The robust-CDKF approach [63] that has been suggested uses the electrical model that is illustrated in 

Figure 2. Electrochemical models, experimental models, electrical models, abstract models based on 

artificial intelligence and more models exist for electrochemical batteries. Thevenin models, Impedance 

models, Runtime based models and Randle equivalent-circuit models are only a few of the several types of 

electrical models. All of the battery's dynamic properties, such as the non-linear OCV, current, temperature, 
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number of cycles, time-dependent storage capacity and transient responses are included in this 

model.According to the Kirchhoff laws, the terminal voltage can be written as follows.  

𝑉𝑡 = 𝑉𝑜𝑐(𝑆𝑂𝐶) − 𝑉1 − 𝑉2 − 𝐼𝑡𝑅𝑖𝑛                                               (10) 

  
Fig. 2. The battery model  

The dynamics of the state of charge and polarization voltages are as follows:  

𝑆𝑂𝐶̇ = −
1

𝑅0𝐶0
𝑆𝑂𝐶 − (

𝐼𝑡

𝐶0
) + ∆𝑓1                                                   (11) 

𝑉̇2 = −
𝑉2

𝑅2𝐶2
+

𝐼𝑡

𝐶2
+ ∆𝑓3                                                         (12) 

 

Where voltages V1 and V2 are corresponds to the electrochemical and concentrate respectively. 

Uncertainties in the battery model and the internal/external disturbances are included in Δf1 to Δf3. The 

updated mean covariance matrix and updated mean estimation of the battery's state variables, as well as the 

SoC are determined in the last phase.  

𝑋̂𝑖 = 𝑋̂𝑖|𝑖−1 + 𝐾𝑖(𝑌𝑖 − 𝑌̂𝑖)                                                      (13) 

                                            

𝑃̂𝑖 = 𝑃̂𝑖|𝑖−1 − 𝐾𝑖𝑃̂𝑦𝐾𝑖
𝑇                                                         (14) 

Varying-parameter model  

It is preferred to include the battery's hysteresis as an additional system state. The discussed issues with the 

zero-state model are resolved by adding SOC to the state vector to augment the hysteresis and by utilising 

a Kalman filtering approach to estimate both OCV and SOC. The hysteresis-state model developed by Plett 

[64] is applied in this work using the following formulation:  

𝑑ℎ(𝑆𝑂𝐶,𝑡)

𝑑𝑆𝑂𝐶
= 𝛾𝑠𝑔𝑛(𝑆𝑂𝐶̇ )(𝑀 (𝑆𝑂𝐶, 𝑆𝑂𝐶)̇ − ℎ(𝑆𝑂𝐶, 𝑡))                               (15) 

The maximum polarisation brought on by battery hysteresis as a result of SOC and its rate of change is 

known as 𝑀(𝑆𝑂𝐶, 𝑆𝑂𝐶̇ ). 

The model yield output can be represented considering hysteresis.  

𝑉𝑘= OCV(𝑆𝑂𝐶𝑘) – 𝑅𝑖𝑘 + ℎ𝑘                                                  (16) 

Extended Kalman filtering for zero-state hysteresis model [64] is summarized below.  

Nonlinear state-space model  

𝑆𝑂𝐶𝑘+1 = 𝑆𝑂𝐶𝑘 −
𝜂𝑖𝑖𝑘∆𝑡

𝐶𝑛
+  𝑤𝑘                                                     (17) 

𝑉𝑘= OCV(𝑆𝑂𝐶𝑘) – 𝑅𝑖𝑘 − 𝑠𝑘𝑀 + 𝑣𝑘                                               (18) 

Where 𝑤𝑘 is independent zero-mean, gaussian noises with covariance 𝑃𝑣  

𝑣𝑘 is independent zero-mean, gaussian noises with covariance 𝑃𝑤  

𝐶̇𝑘 =
∂OCV(𝑆𝑂𝐶𝑘)

∂𝑆𝑂𝐶𝑘
|𝑆𝑂𝐶𝑘=𝑆𝑂𝐶̇ 𝑘

−                                      (19) 

Initializing k=0,  

𝑆𝑂𝐶0
+ = 𝐸[𝑆𝑂𝐶0]                                                 (20)  
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𝑃+
𝑆𝑂𝐶̂̇ ,0

=E [(𝑆𝑂𝐶0 − 𝑆𝑂𝐶̂0
+)(𝑆𝑂𝐶0 − 𝑆𝑂𝐶̂0

+)𝑇]                                      (21) 

Computing k=1, 2, …..  

𝑆𝑂𝐶̂𝑘
− =  𝑆𝑂𝐶̂𝑘−1

+ -
𝜂𝑖𝑖𝑘−1∆𝑡

𝐶𝑛
                                           (22) 

𝑃𝑆𝑂𝐶̂,𝑘
− = 𝑃𝑆𝑂𝐶̂,𝑘−1

+ + 𝑃𝑤                                                 (23) 

Update on measurements  

𝐿𝑘 = 𝑃𝑆𝑂𝐶̂,𝑘
− 𝐶̂𝑘

𝑇[𝐶̂𝑘𝑃𝑆𝑂𝐶̂,𝑘
− 𝐶̂𝑘

𝑇 + 𝑃𝑣]−1                                  (24) 

𝑆𝑂𝐶̂𝑘
+ = 𝑆𝑂𝐶̂𝑘

− + 𝐿𝑘[𝑉𝑘 − 𝑂𝐶𝑉(𝑆𝑂𝐶𝑘) + 𝑅𝑖𝑘 + 𝑠𝑘𝑀]                                 (25) 

𝑃𝑆𝑂𝐶̂,𝑘
+ = (1 − 𝐿𝑘𝐶̂𝑘)𝑃𝑆𝑂𝐶̂,𝑘

−                                              (26) 

 

  
Fig. 3. MATLAB Simulink model of Kalman filtering based SOC Estimation [65]  

  
Fig. 4. Flowchart for the implementation of KF based method  
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The MATLAB Simulink model for the extended Kalman filter is represented in Figure 3. The flowchart 

for implementation of the proposed Kalman filtering based method, is given in Figure 4.  

 

3. Kalman filters implementation  

To forecast the state of a physical or actual process, the KF is based on a set of differential equations (a 

model). As a result, by adjusting the state variables, it minimises the error between a linear system's 

measured and expected output. The filter is frequently used in the battery field to forecast cell voltage using 

an ECM and a coulomb counting. The relationship between the SOC and the OCV is taken into 

consideration for this reason. The discrepancy between the estimated and measured voltages is then 

compared, and by modifying the SOC and other ECM variables, it is made as small as possible. State 

estimation for linear systems can be accomplished using a linear Kalman filter [66, 67].  

The linear Kalman filter (LKF) is not frequently utilised in literature because of the non-linear cell 

behaviour. The KF can be used with batteries using first-order Taylor approximation of the differential 

equations to linearize the system and measurement matrices in the actual state. Extended Kalman Filter 

(EKF) is the name of this strategy [68–78]. However, because of the linearization error and the neglect of 

the higher-order derivatives of the Taylor approximation, filter estimation can lead to erroneous behaviour 

and divergence of the filter [78]. The sigma point Kalman filter (SPKF) was created for this purpose. Here, 

a set of sigma points are used to approximate the linearization without the need for derivatives [78-80]. The 

unscented Kalman filter (UKF) and the central difference Kalman filter (CDKF) are two popular varieties 

of the SPKF.  

An UKF based on the unscented transformation is provided in [67,70,81-85]. By skipping the creation of 

the system and measurement matrices, this transformation can be used to approximatively determine the 

desired values and the covariance of a random variables propagated through a nonlinear function [78]. The 

interpolation used by Stirling provides the foundation for the CDKF [78,8687]. The derivation is omitted, 

just like in the case of the UKF. The application of scaling and gain factors is related to the distinction 

between the two filters. The UKF employs three scaling factors, compared to just one in the CDKF.  

Both filters drawback is that each time step's square root calculation of the covariance matrix using the 

Cholesky factorization is necessary. The positive definition of the covariance matrix cannot be guaranteed, 

and rounding errors can happen. Paper [78,82], introduced the square root forms of the UKF and CDKF to 

minimize calculation error. The Cholesky factorization is not calculated in each time step but is just updated 

in this case. Adaptive EKF (AEKF) were developed for decreasing the time for tuning of filters[88-94]. In 

this, the difference between the actual and anticipated output voltage is used to calculate the process and 

measurement noise online.  

 

3.a. Kalman filter  

Noise is added to the state-space notation in the discrete ECM to account for model and measurement 

uncertainty. The process noise and measurement noise are represented respectively by the two random 

variables wk ∈ Rn and vk ∈ Rm. With this notation, the measurement equation and the state-space 

representation are expanded to:  

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘                                        (27) 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝑣𝑘                                               (28) 

 

If the mean values are zero and the measurement noise and process noise are uncorrelated, it may be 

assumed that:  

𝐸[𝑤𝑤𝑡] = Q                                                     (29) 

𝐸[𝑣𝑣𝑡] = r                                                       (30) 

 

As a result, E is the statistical expectation operator, r is the measurement noise covariance and Q is the 

process noise matrix covariance [95].  
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Fig. 5. Calculation sequence of a Kalman filter  

 

Considering certain assumptions, the algorithm simplifies to the following calculation sequence.  

Initializing 

𝑥0
+ = 𝐸[𝑥0]                                                             (31) 

𝑃0
+ = 𝐸[(𝑥0 − 𝑥0

+)(𝑥0 − 𝑥0
+)𝑡]                                                         (32) 

Predicting 

𝑥𝑘
− = 𝐴𝑘−1𝑥̂𝑘−1

+ + 𝐵𝑘−1𝑢𝑘−1                                                (33) 

𝑃𝑘
− = 𝐴𝑘−1𝑃𝑘−1

+ 𝐴𝑘−1
𝑡 + 𝑄                                                (34) 

Correcting gain 

𝑦𝑘 = 𝐻𝑘𝑥𝑘
− + 𝐷𝑘𝑢𝑘                                                    (35) 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑡(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑡 + 𝑟)−1                                               (36) 

After correcting 

𝑥𝑘
+ = 𝑥𝑘

− − 𝐾𝑘(𝑈𝑘 − 𝑦𝑘)                                                   (37)  

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−                                                    (38) 

 

This kind of Kalman filter is referred to as a linear Kalman filter (LKF), in the work that follows. All 

varieties of Kalman filters use the given calculation process.  

 

3.b. Extended Kalman filter  

The state-space equation and measurement equation are taken to have the following forms in order to 

account for nonlinear behaviour:  

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘                                                             (39) 

𝑦𝑘 = 𝑒(𝑥𝑘 , 𝑢𝑘) + 𝑣𝑘                                                                (40) 

 

Given f and e are two differentiable functions. The first order Taylor expansion can be used to approximate 

these two functions if their time deviation is minimal. Additionally, either xˆ+ k or xˆ- k, depending on the 

most recent state approximation, is used to evaluate the functions. This process makes a distinction between 

the LKF and the EKF. These presumptions allow the matrices A and H from Equations 27 and 28 to be re-

written in the form:  

𝐴𝑘 =  
𝜕𝑓(𝑥𝑘,𝑢𝑘)

𝜕𝑥𝑘
|𝑥𝑘

                                                             (41) 
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𝐻𝑘 =  
𝜕𝑒(𝑥𝑘,𝑢𝑘)

𝜕𝑥𝑘
|𝑥𝑘

                                                             (42) 

 

The equations 41 and 42 are often referred to as Jacobian matrices. The extended Kalman filter method 

functions analogous to the linear Kalman filter when these variances are taken into consideration.  

  

3.c. Adaptive Extended Kalman filter  

It is possible to apply the KF to non-linear systems because of the EKF. There are some systems, though, 

whose dynamical processes and parameters cannot be precisely identified. The KF then makes inaccurate 

estimations as a result.  

The measurement noise and the process noise can utilise the system's remaining degrees of freedom to find 

a solution to this issue. An accurate estimation of the condition and a quick transient response are produced 

by selecting these values properly [88,89,96]. The process noise and the measurement noise can also change 

in each time step as a result of fluctuating environmental effects (like temperature), which affect the 

approximation [76]. In place of using the measurements noise values, which takes average of overall 

potential states of the random variables, the concept is to utilise the average values of deviation of measured 

and anticipated measurements values at the most recent time step. Despite the fact that this goes against the 

Kalman gain's ability to minimise, the KF replacement takes into account the system's actual behaviour. 

Calculating the moving average V φ of the measurement deviation can be used to put this into practise:  

𝑉𝑘
∅ =

1

∅
∑ (𝑈𝑘 − 𝑦𝑘)𝑘

𝑚=𝑘−∅+1 (𝑈𝑘 − 𝑦𝑘)𝑡                                                      (43) 

 

Using window sizes of φ ≤ k and φ ∈N. The measurements noise and the process noise matrix are updated 

as follows [88,89,96] based on the averaged error.  

𝑟𝑘 = 𝑉𝑘
∅+𝐻𝑘𝑃𝑘

−𝐻𝑘
𝑡                                                              (44) 

𝑄𝑘 = 𝐾𝑘𝑉𝑘
∅𝐾𝑘

𝑡                                                               (45) 

 

3.d. Unscented Kalman filter/ Sigma point Kalman filter  

Neither a linear nor a Gaussian distributed system is possible. Additionally, the impact of the noise may 

not always be linear. As a result, the measurement equation and the state-space equation are  

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘, 𝑤𝑘)                                                              (46) 

𝑦𝑘 = 𝑒(𝑥𝑘 , 𝑢𝑘, 𝑣𝑘)                                                                (47) 

 

The random variable is approximated by other vectors using the differentiable functions f and e, where the 

covariance matrix and mean value are created so that they are equivalent to the state parameters. The choice 

of these vectors is unrestricted because both the weights and the number of each sigma point are arbitrary. 

The probability distribution that was created, though, is simply a rough approximation of the Gaussian 

distribution. As a result, only in the first two moments of a Taylor approximation are the mean value and 

covariance matrix equivalent. All odd moments are zero, which is equivalent to the Gaussian distribution.  

Apart from the Gaussian distribution approximation, the UKF algorithm is identical to all other KFs. Given 

the process noise, it is necessary to determine 2n+1 sigma points λn, where n is the state vector's length. 

The estimation of the following state can therefore be obtained using the state space in Eq. (46). The 

measurement equation and covariance matrices are then computed. The derivation and the entire algorithm 

are described in [78,80,81].  

 

4. Simulation Results and Analysis  

The estimation for SOC was carried out using extended Kalman filtering, adaptive extended Kalman 

filtering and unscented Kalman filtering. For this input measured data contains time, voltage, current and 

temperature. The simulation results obtained are given in below Figures 6-13.  
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At first the estimation using extended Kalman filtering was attempted. The Figure 6, shows the measured 

and estimated battery SOC using extended Kalman filter. The nominal capacity for the battery under 

investigation is 4.81Ah. It was observed that the battery terminal voltage decreased from 4.2V to 3.73V in 

4 hours duration.  

  
Fig. 6. Actual and estimated Terminal voltage based on EKF vs time plot  

  
Fig. 7. Terminal voltage error based on EKF vs time plot  

The battery terminal voltage error is represented in Figure 7. It was observed that the terminal voltage 

error is within 0.02V range. The RMSE (root mean square error) value for the battery terminal voltage is 
1.31%.  

  
Fig. 8. Coulomb counting and estimated SOC (%) based on EKF vs time plot  

The Actual SOC (theoretically calculated using coulomb counting) and SOC estimated using EKF method 

is shown in Figure 8. It can be seen that the actual and estimated SOC is almost matching. The difference 

in actual and estimated SOC is also studied. The error is SOC estimation is shown in Figure 9. The root 
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mean square error (RMSE) value for SOC estimation is 1.94%. Maximum error is SOC estimation was 

observed as 2.80%.  

  
Fig. 9. EKF Based Estimated SOC Error (%) vs time plot  

Secondly, adaptive extended Kalman filter (AEKF) based method was used to estimate the SOC of the 

battery. In AEKF method an additional Kalman gain is included in comparison to EKF method. AEKF 

method initially gives more error in comparison to EKF method. However, after few minutes it gives better 

result for the SOC estimation. Figure 10 shows the estimated actual and estimated SOC after 0.5 hours. 

The estimated SOC error value was also calculated and shown in Figure 11. The RMSE value for SOC 

Error using AEKF for entire interval was 4.98%. However, it can be seen in the Figure 11 that, maximum 

SOC error after 0.5 hours interval was within 0.65%.   

  
Fig. 10. Actual and Estimated SOC (%) based on AEKF vs time plot  

  
Fig. 11. Estimated SOC error based on AEKF (%) vs time plot  
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Thirdly, unscented Kalman filter (UKF) based method was used to estimate the SOC of the battery. This 

gives comparatively better results than the previous two methods. This simulation was run for greater time 

interval i.e. multiple charge and discharge cycles and it gave satisfactory performance. The actual and 

estimated SOC based on UKF method is shown in Figure 12.  

  
Fig. 12. Actual and estimated SOC based on UKF (%) vs time plot  

  
Fig. 13. Actual and estimated based on UKF SOC (%) vs time plot  

The difference between the actual SOC and SOC estimated using UKF method is shown in Figure 13. The 

above result shows that the error is in the range of less than 1%. The best result was obtained in UKF 

method by tuning the covariance matrices. The best result obtained using this method has RMSE value for 

SOC Estimation as 0.10%. Maximum SOC error was observed as 0.51%. Hence, it can be said that the 

UKF gives better estimate for SOC than EKF and AEKF.  

  

5. Conclusion  

In this paper, different Kalman filters have been used for the state of charge estimation of the Li-ion battery. 

These algorithms have been implemented is simulation and the estimation results are compared. Kalman 

filtering results were compared with experimental data as well. The measurement data and all Kalman 

filtering methods obtained result had good agreement (less than 5% error), showing that the suggested 

approaches may accurately predict the SOC of the battery in dynamic situations.The simulation results 

show that the SOC estimation accuracy of UKF is better than the other KF methods i.e. EKF and AEKF.The 

simulation result of UKF shows anerror of less than 0.51%.Authors suggest that UKF based methods can 

be adopted for SOC estimation in battery management system of Li-ion batteries.  
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